
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

HUTAO-TSP: A Custom Traveling Salesman

Problem for Approximating the Optimal Route for

Elemental Oculus Collection in Genshin Impact

Using Graph Theory

Yavie Azka Putra Araly - 13524077

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: yavieazkaputra@gmail.com , 13524077@std.stei.itb.ac.id

Abstract—HUTAO-TSP (Hamiltonian Undirected

Teleportation Aware Open Travelling Salesman Problem) is a

custom graph traversal algorithm designed for scenarios in which

each node (e.g., elemental oculus in Genshin Impact) must be

visited exactly once in an undirected graph, while allowing the

traveler to utilize zero-weighted teleportation points accessible

from any location in the graph. This algorithm approximates an

optimal solution by combining heuristics from the travelling

salesman problem, Hamiltonian Path theory, and teleportation-

aware path planning, producing efficient traversal routes in a

graph augmented with fast-travel edges. We propose a domain-

specific heuristic for a variant of the Travelling Salesman

Problem (TSP), motivated by the structure of teleportation-

enabled traversal in Genshin Impact. While our method does not

guarantee optimality, it leverages teleport waypoint proximity to

produce lower-cost paths.

Keywords— Approximates, Elemental Oculus, Hamiltonian

Path, Teleportation, Travelling Salesman Problem.

I. INTRODUCTION

Genshin Impact is an open-world action role-playing game

developed and released by HoYoverse in 2020. The game

features an anime-style open world environment and an

action-based combat system using elemental reactions and

character-switching [1]. This game is set in Teyvat, home of

seven nations, each represented by 7 different elements and

ruled by seven different gods known as Archons. The story

follows the Traveler ⸻ the player character ⸻ who, at the

start of the game, is separated from their twin sibling after

they land in Teyvat. Accompanied by Paimon, their guide

along their adventure visiting each country in Teyvat, the

Traveler becomes involved in many conflicts and tries their

best to help the people resolve them.

Figure 1. Genshin Impact official poster for the 5.7 version update. Source:

https://genshin.hoyoverse.com/

As of the time this paper is written, Genshin Impact has

already introduced six countries in Teyvat that represent

different elements released, which are Mondstadt

(anemo/wind), Liyue (geo/earth), Inazuma (electro/lightning),

Sumeru (dendro/tree or plants), Fontaine (hydro/water), and

Natlan (pyro/fire). The developer is also working on the next

country that represents the 7th element, which is Snezhnaya

(cryo/ice). Each country in Teyvat is also inspired by real-

world countries. Mondstadt from Germany, Liyue from China,

Inazuma from Japan, Sumeru from the Middle East, Fontaine

from France, Natlan from Africa, and Snezhnaya from Russia.

One of the most important aspects of Genshin Impact

gameplay is exploring Teyvat. In Teyvat, players can unlock

Teleport Waypoints, which allow players to fast travel to the

teleportation device that is spread across Teyvat from any

point to make it easier for players to explore. Players have to

collect many items spread across every region while also

defeating the monsters. One of the most important items in the

game is the Elemental Oculus. This item is crucial for the

player’s progress. Collecting Elemental Oculus will give

players rewards and also increase their stamina for easier

exploration and longer sprint and climbing durations.

This paper aims to approximate the most efficient way to

collect the Elemental Oculi using a method called HUTAO-

mailto:yavieazkaputra@gmail.com
mailto:13524077@std.stei.itb.ac.id
https://genshin.hoyoverse.com/

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

TSP (Hamiltonian Undirected Teleportation Aware Open

Travelling Salesman Problem). This method is a combination

of Hamiltonian Path, graph theory, and the Travelling

Salesman Problem. This method also adds variation to the

graph by adding teleportation devices, in this case,

Teleportation Waypoints in Teyvat.

II. THEORETICAL FRAMEWORK

A. Graph

Graph G is defined as a G = (V, E), where V is a non-empty

set of vertices and E is an edge set that connects a pair of

vertices. There are various types of graphs, such as:

1. Directed & Undirected Graph: A directed graph is A

graph that has orientation in its edges, whereas an

undirected graph is the opposite.

Fig. 2: Undirected graph (left) and directed graph (right). Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

2. Weighted Graph & Unweighted Graph: A weighted

graph is a graph that weights every edge on the

graph, whereas an unweighted graph is the opposite.

Fig. 3: Weighted graph (left) and unweighted graph (right).

Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

3. Simple Graph: A simple graph is a graph that does

not contain loops or multiple edges.

Fig. 4: Simple graph. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/20-Graf-Bagian1-2024.pdf

4. Complete Graph: A complete graph is a graph in

which each vertex has an edge to all other vertices.

Fig. 5 Undirected graph (left) and directed graph (right). Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf

B. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a classical

problem in graph theory. The problem challenge is to find the

fastest route for a salesman to visit all of the cities exactly

once and return to the first city. In this paper, the “salesman”

refers to the Traveler, and the “cities” represent the Elemental

Oculus [2].

TSP is an NP-hard problem, meaning that no known

algorithm can solve it efficiently in polynomial time for large

inputs. It requires exponential time and memory to find the

exact solution. There are many approaches for solving TSP,

including brute force, greedy, dynamic programming, and

heuristic methods. But as stated before, these algorithms have

exponential time complexity. Take a look at this example

graph:

Fig. 6: Weighted Graph for TSP. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-

Bagian3-2024.pdf

This is an example of the Traveling Salesman Problem. The

goal of the problem is to find the minimum weight for visiting

all nodes and returning to the starting node. The brute force

approach tried every possible path and calculated their total

distances, resulting in a time complexity of . On the

other side, the dynamic programming approach, such as the

Held-Karp Algorithm, has Time complexity. For

example, finding the route for collecting 30 Elemental Oculus

by using brute force takes times of

computation for the computer to solve it, and

 Time of

computation for the computer to solve it using the Held-Karp

Algorithm. Assuming a computer could handle 1,000,000,000

computations per second, brute forcing will take an incredibly

long time, more than the age of the universe. On the other

hand, the Held-Karp Algorithm will take around.

Days, or roughly 89 years, to find the solution.

After knowing that computing every possible path is nearly

impossible using modern computing technology, we can still

use approximation algorithms to significantly decrease the

time of computation, yet still give a reasonable solution. We

can apply approximation algorithms⸻such as those based on

the Minimum Spanning Tree (MST),⸻to obtain a reasonable

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

answer without taking years to find the exact solution. In this

paper, we will use the Minimum Spanning Tree to

approximate the most efficient solution for the graph.

C. Minimum Spanning Tree

A spanning tree is a connected, undirected subgraph that

includes all the vertices of the original graph. A Minimum

Spanning Tree (MST) is a spanning tree of a graph with the

minimum possible weight among all possible spanning trees

of a graph. There can be multiple MSTs for a graph if different

spanning trees yield the same minimum total weight.

Fig 7: Minimum Spanning Tree from a weighted graph. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-

Bag1-2024.pdf

There are several algorithms to find the MST for a given

graph, including Kruskal’s Algorithm, Prim’s Algorithm, and

Boruvka’s Algorithm. Many problems in different topics can

be solved using MST, such as network design, image

processing, biology, and social network analysis. In this paper,

we will use Prim’s Algorithm to find the MST that connects

all Elemental Oculi in the map.

D. Hamiltonian Path and Hamiltonian Circuit

A Hamiltonian Path is a path that visits every vertex in a

graph exactly once without returning to the starting vertex [2].

A Hamiltonian Circuit is a circuit in a graph that visits every

vertex exactly once and returns to the starting vertex. The

difference between the Hamiltonian Cycle and Traveling

Salesman Problem lies in their goals: the Hamiltonian Cycle

problem asks whether such a cycle exists, while TSP seeks the

cycle with the minimum total weight that visits each vertex

exactly once. Therefore, TSP will be used to find the

minimum weight of a Hamiltonian Circuit.

E. Depth First Search

Depth First Search is of graph traversal algorithm that we

travel all adjacent vertices one by one. After there are no

nodes to visit left, we go back to the previous branch that has

at least an adjacent node that has not been visited yet. This

Algorithm is similar to a tree, where we first completely

traverse a subtree and then move to the next subtree. The key

difference is that DFS allows traversal within a graph that has

cycles [3].

F. Elemental Oculus

Fig. 8: Elemental Oculus represents each element. (From left to right:

Pyroculus, Geoculus, Dendroculus, Anemoculus, Hydroculus, Electroculus).

Source: https://x.com/Archon7gnosis/status/1813540629320007739

Oculi in Genshin Impact are collectible items that can be

found across Teyvat. They are scattered throughout the world

and are used to level up their corresponding Statue of the

Seven [4]. Upgrading the Statue of the Seven grants players

various rewards, such as Mora (the in-game currency),

primogems (a premium currency used for character and

weapon wishes), and stamina. Increased stamina allows

players to walk, climb, and swim for longer durations, which

significantly eases exploration, especially for new players.

Currently, there are 6 types of Elemental Oculus in Genshin

Impact. Each type represents its region and element.

Anemoculus, Geoculus, Electroculus, Dendroculus,

Hydroculus, and Pyroculus have already been added to the

game; each can be found in their respective region. Finding

Elemental Oculus needs time, effort, and patience. Here’s the

data about the number of Elemental Oculus in each region:

Table 1: Number of Elemental Oculus in Genshin Impact at 5.0 version.

Source: https://genshin-impact.fandom.com/wiki/Oculus

Region Oculi

Mondstadt 66

Liyue 131

Inazuma 181

Sumeru 271

Fontaine 271

Natlan 222

There are already in total of 1.142 Elemental Oculus in the

game that need to be found across the map. In May 2021,

Hoyoverse, Genshin Impact, released the Teyvat Interactive

Map.

This interactive map allows players to track every item in

the game and find their location on the map. But sadly, the

map does not integrate with the game. It means that players

have to open the map while playing the game. But this

interactive map is really helpful for players who do not have

much time exploring the map. For example, one of the

subregions in Fontaine, New Fontaine Research Institute, has

around 27 Hydroculus in its area. Considering the Teyvat map

is already really wide and having thousands of Elemental

Oculus (and the number is increasing), finding a way to collect

them efficiently is quite a helpful idea.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://x.com/Archon7gnosis/status/1813540629320007739
https://genshin-impact.fandom.com/wiki/Oculus

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 9: Teyvat Interactive Map. Source:

https://act.hoyolab.com/ys/app/interactive-map

G. Teleport Waypoints and Statue of The Seven

Fig. 10: Statue of the Seven in Fontaine (left) and Teleport Waypoint (right).

Source: in-game screenshot by author.

Teleport Waypoints are structures that players can find and

unlock across Teyvat. Statues of the Seven are structures

found all around Teyvat, representing their country by their

corresponding Archon. The difference between Teleport

Waypoints and Statues of the Seven is in their function

besides teleporting. Unlike the Teleport Waypoints, Statues of

The Seven have more purposes than just as a teleportation

device. They can unlock areas, heal and revive fallen

characters, change the Traveler’s elemental power depending

on which statues the Traveler interacts with, and also offer

rewards in exchange for oculi.

III. ELEMENTAL OCULUS DISTRIBUTION MODELLING

A. Getting Coordinates for Each Elemental Oculus

The first thing we have to do for modeling Elemental Oculus

distribution is to get the data of the coordinates for every

Elemental Oculus. Let’s take a look at the previous example,

the Elemental Oculus distribution in New Fontaine Research

Institute, one of the subregions in Fontaine.

Fig. 11: Distribution of Hydroculus in New Fontaine Research Institute.

Source: https://act.hoyolab.com/ys/app/interactive-map/index.html

As mentioned before, there are in total of 27 Hydroculus in the

subregions, 9 teleport waypoints, and 1 Statue of the Seven.

There are many ways to mark their location. In this paper, we

use graphic design software, such as Canva, to mark the

object's location. By marking every object, we get a group of

vertices, as shown in the figure below:

Fig. 12: Elemental Oculus (marked with blue color) and Teleport Waypoints

distribution (marked with red color). Source: author.

After marking the object's location, we have to get its

coordinates. There are many tools available to do this. In this

paper, we are using Python with the matplotlib library to let us

get the coordinates for each object.

import matplotlib.pyplot as plt

img = plt.imread('marked_node.png')
coords = []

def onclick(event):
 x, y = int(event.xdata), int(event.ydata)
 coords.append((x, y))
 print(f"Clicked: ({x}, {y})")
 if len(coords) == 37:
 plt.close()

plt.imshow(img)
plt.title("Click on the nodes (order matters)")
cid = plt.gcf().canvas.mpl_connect('button_press_event', onclick)
plt.show()

Save coordinates
with open("node_coordinates.txt", "w") as f:
 for i, (x, y) in enumerate(coords):
 f.write(f"{i},{x},{y}\n")

Source code 1: Python source code for getting every object's coordinates by

clicking it. Source: author.

This code allows us to get the coordinates for every object in

the map by simply clicking on it. After running the program

and clicking every object on the figure, we get the coordinates

for each Elemental Oculus and Teleport Waypoints (Statue of

the Seven is categorized as Teleport Waypoints) as follows:
Table 2: Hydroculus and Teleport Waypoints coordinates from Figure 7. Idx 0

– 26 are Elemental Oculus, Idx 27 – 36 are Teleport Waypoints. Source:

Author

Idx x y Idx x y Idx x y

0 211 63 13 868 644 26 698 939

1 685 219 14 916 652 27 140 161

2 421 269 15 1047 631 28 954 353

https://act.hoyolab.com/ys/app/interactive-map
https://act.hoyolab.com/ys/app/interactive-map/index.html

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

3 157 361 16 1184 781 29 704 446

4 178 371 17 136 656 30 1203 569

5 513 440 18 677 702 31 752 665

6 754 463 19 868 758 32 902 758

7 444 486 20 881 816 33 296 606

8 673 525 21 571 783 34 36 667

9 504 540 22 450 875 35 533 893

10 396 567 23 147 877 36 879 948

11 344 606 24 196 931

12 117 486 25 635 868

B. Connecting every Elemental Oculus and Teleport

Waypoints with a Minimum Spanning Tree

As mentioned before, Minimum Spanning Tree (MST) is a

connected, undirected subgraph that includes all the vertices of

the original graph. Using MST can give us the minimum

weight to connect every node in a graph with minimum

weight. There are several algorithms to find the MST from a

graph, such as Prim’s Algorithm and Kruskal's Algorithm. In

this paper, we are using Prim’s Algorithm.

Prim’s Algorithm is used for finding the MST for a graph.

It starts with an empty spanning tree. The algorithm works as

follows:

Step 1: Choose a minimum edge from graph G and insert it

into a set T.

Step 2: Choose an edge (u, v) such that (u, v) is adjacent to

T, but does not form a circuit with T.

Step 3: Repeat steps 1 and 2 for (n–2) times [2].

This algorithm has O(n*n) time complexity and is guaranteed

to find the MST from a connected, weighted graph. This

algorithm is also efficient for finding the MST from a sparse

graph, like the Elemental Oculus distribution.

We can also use Python code for finding the MST from a

graph automatically by using network, numpy, and matplotlib

libraries.

Compute MST for EO nodes using Prim's algorithm
mst = nx.minimum_spanning_tree(G.subgraph
 (range(len(eo_coords))),
 weight='weight', algorithm='prim')

Plot all nodes, highlight EO vs TW
pos = nx.get_node_attributes(G, 'pos')
node_types = nx.get_node_attributes(G, 'type')

Split EO and TW for color coding
eo_nodes = [n for n in G.nodes if node_types[n] == 'eo']
tw_nodes = [n for n in G.nodes if node_types[n] == 'tw']

plt.figure(figsize=(12, 12))

Draw EO and TW nodes, and MST edges
nx.draw_networkx_nodes(G, pos, nodelist=eo_nodes, node_color='skyblue',
label='Elemental Oculus')
nx.draw_networkx_nodes(G, pos, nodelist=tw_nodes,
node_color='mediumpurple', label='Teleport Waypoint')
nx.draw_networkx_edges(mst, pos, edge_color='black')

Source code 2: Python code for finding the MST from a graph. Source:

Author.

After running the program, we get the MST as follows:

Fig. 13: MST generated from Elemental Oculus distribution in Figure 7.

Table 3: Some not visible nodes’ weight.

X Y Distance(X,Y)

3 4 23.26

11 10 65.00

7 9 80.72

7 5 82.93

23 24 72.92

19 20 59.44

13 14 48.66

By using this MST, we will determine the most efficient way

to visit all nodes by also utilizing the Teleport Waypoint.

C. Connecting Teleport Waypoints to MST

As mentioned before, we have already made the MST for

Elemental Oculus distribution. After that, we can connect the

Teleport Waypoints to every node in the graph.

As the name “Teleport Waypoints” suggests, this structure

allows players to teleport to it without walking from every

place in the map. This also occurs in our graph, making it a

directed path that connects to all 27 nodes with 0 weight. But

since it is obvious that every node is connected with every

Teleport Waypoint, we don’t need to draw the edge. Instead,

we need to compute the distance from a Teleport Waypoint to

some nodes, because we will utilize these teleport waypoints

to leverage the cost for visiting every node.

IV. PROBLEM FORMULATION AND HUTAO-TSP CONCEPTS

A. Problem Statement

HUTAO-TSP is used to approximate the most efficient

way to visit all nodes with a new feature, Teleport Waypoint.

In this paper, we will use it to collect every Elemental Oculus

by just visiting them once. Even though this approach looks

like it only works with a teleportation-aware graph, generally,

for any TSP problem, HUTAO-TSP can still be used to

leverage the traveling cost for visiting every node in the graph.

First, we need to find the MST of a graph. We already did

it before. We can see the MST that we made as a binary tree,

since every node has a maximum of 3 degrees. After forming

the binary tree, there are 2 steps in HUTAO-TSP ⸻As the

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

name Hamiltonian Undirected Teleportation Aware Open

TSP⸻Creating a Hamiltonian path and utilizing Teleportation

Waypoints.

B. Creating Hamiltonian Path

Before creating the Hamiltonian Path, we need to find the

initial traversal path for the MST. As shown in Figure 7, every

node in the MST has a maximum of 3 degrees. We also don’t

want to visit an edge twice, making our MST a binary tree.

We can create a binary tree based on the MST with Python.

Fig. 14: Binary tree formed from the MST in Figure 7. Source: Author

But as we know, traversing a binary tree is not efficient

because it does many backtracks. Let’s take an example with

traversing the binary tree we have made in Figure 8 with pre-

order. First, we start at the root node, 0. We can travel the tree

naturally until reaching node 1. The path will be [0 – 2 – 5 7 –

9 – 8 – 6 – 1]. But after reaching node 1, we need to do

backtracking to nodes 6 and 8, and continue to node 18. This

is not an efficient way to visit every node.

This problem can be solved by creating a Hamiltonian Path

from the binary tree by adding some edges to the tree. We

know creating a Hamiltonian Path from a tree will make the

tree no longer a tree, that’s why this added edge is called a

‘helper edge’. For every leaf in the MST, we can create a

directed edge called a ‘helper edge’ that allows a heuristic

jump from a leaf to another node. This will create a

Hamiltonian Path in the MST and allow us to go to other

nodes without doing backtracking.

Fig. 15: Example of adding a helper edge from the MST. Source: Author.

The picture above is an example of using a helper edge

that allows a heuristic jump from a leaf to another node. The

idea is to find the closest unvisited node to be visited next.

That’s why the helper edge will not always look like above,

since it looks for the closest unvisited node to connect with the

current leaf. As we travel the tree, every time we reach a leaf,

the distance from the previous root of a subtree will be

calculated and compared to the heuristic jump distance. If the

heuristic jump gives less weight, we will choose to jump

rather than do backtracking. For example, if we travel the tree

in order, starting from node 0, the path will be [0 – 2 – 5– 7 –

9 – 8 – 6 – 1]. Node 1 is a leaf. So, we need to do backtracking

from node 1 to node 8 and continue to node 18. The path will

be [1 – 6 – 8 – 18]. This takes 253.6 + 102.0 + 177.0 = 532.6

weight to reach the next unvisited node. On the other side,

using a helper edge will shorten the path. From node 1, the

closest unvisited node is 10 with a distance of 452.35. This

will make travelling the tree will be more efficient.

C. Utilizing Teleport Waypoints

Teleport waypoints are also crucial in HUTAO-TSP, since

T and A in HUTAO-TSP stand for “Travelling Aware”.

Teleport waypoints are used to significantly increase the

efficiency of collecting Elemental Oculus. As mentioned

before, players are allowed to teleport to every Teleport

Waypoint from every place in the map.

Teleport waypoints can be used to avoid backtracking. For

example, let’s take a look back at the tree. If we travel the tree

with pre-order, the path will be [0 – 2 – 5– 7 – 9 – 8 – 6 – 1].

Note that node 8 is the root of a subtree with 9 and 18 are its

children. Using pre-order traversal will always make us travel

the left child first, which is 8. But this path is not efficient. As

we know, there is a teleport waypoint 29 that has less distance

to node 6 rather than from node 8 itself. On the other hand,

visiting node 18 directly from node 8 is also not efficient,

since we can visit 18 from teleport waypoint 31. That’s why

teleport waypoints are really important here.

V. THE HUTAO-TSP ALGORITHM: A TWO-PHASE HEURISTIC

FRAMEWORK

The core idea of how HUTAO-TSP works lies in how it

determines the visitation sequence. As we know, there are

several tree and graph traversal algorithms. In HUTAO-TSP,

we employ a modified DFS to choose which branch to visit

next, called “Branch Prioritization”. This key heuristic of

HUTAO-TSP is applied at any junction (a node with multiple

unvisited child branches) to decide the order of exploration.

The algorithm is structured into two primary phases:

1. Phase 1: Optimal sequence determination

In this phase, HUTAO-TSP will do traversal within the MST

that has been made before using modified DFS. This phase

prioritizes the global structure of the route.

2. Phase 2: Final path construction

Using the sequence from phase 1 as a blueprint, a detailed and

more efficient path is constructed in this phase by making a

discrete “Teleport-or-Walk” decision each time we try to

reach another node.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

A. Formal problem statement and MST construction

Given a complete, weighted, and undirected graph G = (V,

E), where the vertex set V is partitioned into Elemental Oculus

(EO) nodes and Teleport Waypoint (TW) nodes. Each EO and

TW has its coordinates, making the edge set E contains all

pairs of EO nodes weighted by their Euclidean Distance.

Creating an MST will give an efficient structural backbone for

traversal, denoted T_mst (Fig. 7).

B. Phase 1: Sequence determination via Teleportation-Aware

DFS

This phase will find an oculus_visit_sequence,

which will be the path for collecting every Elemental Oculus

using a modified DFS algorithm.

• Input

An MST, in this case T_mst, is rooted at the

designated source_node. This can be achieved by

creating a binary tree (Fig. 8) or simply by choosing a

leaf from T_mst.

• Data structures

- A stack for managing DFS traversal, initially

filled with source_node.

- A visited_oculi set to save Oculus that has

been collected

- An oculus_visit_sequence list as the

output. This will give the path for visiting every

Elemental Oculus, without utilizing the Teleport

Waypoints.

• Algorithm

1. While the stack is not empty, pop a node, designated

current_node.

2. If current_node is visited, which means it is in

visited_oculi, continue to next iteration

3. Add current_node to visited_oculi and

oculus_visit_sequence, current_node

will not be visited next.

4. Find every unvisited child of current_node.

5. Junction Heuristic: If current_node has more

than 1 child, apply the “Branch Prioritization”

Heuristic:

a. For each child, calculate its teleport inefficiency

score. This score is defined as the mean Euclidean

distance from every node in that child's respective

subtree to its nearest Teleport Waypoint. A higher

score signifies greater geographic isolation from the

teleport network.

b. Sort the children in descending order based on this

score.

6. Push the sorted children onto the stack. Due to the

LIFO nature of the stack, the branch with the highest

inefficiency score is processed next.

• Output: The oculus_visit_sequence list,

which represents the strategic order of visitation.

C. Phase 2: Final Path Construction with Teleport-or-Walk

Decisions

This final phase constructs the explicit travel path,

including waypoints, and calculates the total traversal cost.

This will also give a step-by-step exploration guide to visit the

next Elemental Oculus by directly walking toward it or using

nearby Teleport Waypoints.

• Input:

- The oculus_visit_sequence, which has

been created from phase 1.

- T_mst for teleport waypoint mapping.

- Pre-computed distance between each Elemental

Oculus and its nearest Teleport Waypoint.

• Data Structures:

- A final_path list, initialized with the first

node from the sequence.

- A total_cost variable, initialized to 0.0.

• Algorithm:

1. Iterate through the oculus_visit_sequence

from the first to the second-to-last node. Each pair in

the iteration represents a travel segment from a

from_node to a to_node.

2. For each segment, perform a Teleport-or-Walk

Decision:

a. Calculate walk_cost: The direct edge weight

between from_node and to_node in G.

b. Calculate teleport_cost: This is the cost to

instantly teleport from the player's current

location to the Teleport Waypoints nearest the

destination, and then walk to the destination.

This cost is simply the pre-computed distance

from to_node to its nearest Teleport Waypoints

(nearest_tw_data[to_node]['dist']).

3. Path Assembly:

a. If walk_cost ≤ teleport_cost, the direct

walk is chosen. walk_cost is added to

total_cost, and to_node is appended to

final_path. The instruction to reach the next

node is to walk.

• Otherwise, teleportation is chosen.

teleport_cost is added to total_cost.

• Output: The final_path, a complete, actionable

route containing both Elemental Oculus and Teleport

Waypoints nodes, and the total_cost of this

route.

----- HUTAO – TSP Final Code ----- #

Step 1: Create MST (source code 2)
Step 2: Pre-compute the distance between every node with its closest
teleport waypoint using Euclidean distance
--- STEP 3: PHASE 1 - DETERMINE OCULUS VISIT SEQUENCE VIA DFS ---
print("--- Phase 1: Determining Optimal Oculus Sequence via Teleport-
Aware DFS ---")

Pre-computation for efficiency
nearest_tw_data = precompute_nearest_tw_data(G, len(eo_coords),
len(tw_coords), tw_start_index)

Data structures for the DFS traversal
source_node = 0
T = nx.dfs_tree(mst, source=source_node) # Directed tree for
parent/child logic

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

stack = [source_node]
visited_oculi = set()
oculus_visit_sequence = [] # The ordered list of Oculi to visit

While stack:
 current_node = stack.pop()
 if current_node in visited_oculi:
 continue

 visited_oculi.add(current_node)
 oculus_visit_sequence.append(current_node)

 children = [child for child in T.neighbors(current_node) if child
not in visited_oculi]
 If children:
 if len(children) > 1:
 scored_children = []
 For a child among children:
 score = get_branch_teleport_score(child, T,
nearest_tw_data)
 scored_children.append((child, score))
 scored_children.sort(key=lambda x: x[1], reverse=True)
 children = [child for child, score in scored_children]

 For a child among children:
 stack.append(child)

print("Optimal Visit Sequence Found:", oculus_visit_sequence)

--- STEP 4: PHASE 2 - BUILD FINAL PATH WITH TELEPORT DECISIONS ---
print("\n--- Phase 2: Building Final Path with Teleport-or-Walk
Decisions ---")

final_path = [oculus_visit_sequence[0]] # Start the path with the first
oculus
total_cost = 0.0
path_description = [f"Start at Node {final_path[0]}."]

Iterate through the sequence to decide the travel method between each
pair
for i in range(len(oculus_visit_sequence) - 1):
 from_node = oculus_visit_sequence[i]
 to_node = oculus_visit_sequence[i+1]

 # Option A: Walk directly
 walk_cost = G[from_node][to_node]['weight']

 # Option B: Use the teleport network
 tw_data_from = nearest_tw_data[from_node]
 tw_data_to = nearest_tw_data[to_node]
 teleport_cost = tw_data_from['dist'] + tw_data_to['dist']

 if walk_cost <= teleport_cost:
 # Decision: Walking is better or equal
 to total_cost += walk_cost
 path_description.append(f"Travel from {from_node} -> {to_node}.
Method: Walk (Cost: {walk_cost:.1f})")
 final_path.append(to_node)
 Else:
 # Decision: Teleporting is better
 total_cost += teleport_cost
 tw_from = tw_data_from['id']
 tw_to = tw_data_to['id']
 path_description.append(f"Travel from {from_node} -> {to_node}.
Method: Teleport via TW {tw_from} & {tw_to} (Cost:
{teleport_cost:.1f})")

 # Add the waypoints to the path, preventing duplicate
consecutive waypoints
 if final_path[-1] != tw_from:
 final_path.append(tw_from)
 if final_path[-1] != tw_to:
 final_path.append(tw_to)
 final_path.append(to_node)

--- STEP 5: RESULTS AND VISUALIZATION ---
print("\n--- Traversal Complete ---")
for step in path_description:
 print(step)

print("\n--- Final Path (including Teleport Waypoints) ---")
path_with_labels = [f"TW-{n}" if n >= tw_start_index else str(n) for n

 in final_path]
print(" -> ".join(path_with_labels))
print(f"\nTotal Estimated Cost: {total_cost:.2f}")

#Draw graph

Source code 3: The HUTAO-TSP Algorithm. Source: Author.

We will try to approximate the most efficient path based

on the MST that is shown in Fig. 7 and Fig. 8. Since we

already created the MST and binary tree, we can directly jump

to phase 1.

Initially, the stack is now [0]. The while loop begins. 0 is

now popped from the stack and added to the sequence, making

oculus_visit_sequence now [0]. Next, the only

unvisited child of 0 is 2. Push 2 to the stack, and repeat the

step above. Do the same thing with nodes 5 and 7.

When reaching node 7, this is where the critical decision

starts. Pop 7 from the stack and add it to the output sequence.

oculus_visit_sequence is now [0, 2, 5, 7]. Since node

7 has more than 1 child, the “Branch Prioritization Heuristic”

will try to find which node to visit first.

a) Score Branch 9: The algorithm looks at the entire

subtree connected to Node 9 (nodes 9, 8, 18, 6, 1, 21, 22, 25,

26). It calculates the average distance from all these nodes to

their nearest Teleport Waypoint. This branch is large and

spread out. Let's say the code calculates its Teleport

Inefficiency Score to be 145.8.

b) Score Branch 10: It does the same for the subtree at

Node 10 (nodes 10, 11, 17, 12, 3, 4, 23, 24). This branch is

more compact and generally closer to waypoints. Let's say its

score is 98.5.

c) The Decision: Since 145.8 > 98.5, the algorithm

concludes that Branch 9 is the "harder," more "teleport-

inefficient branch. Therefore, it must be explored first.

d) Update the Stack: To explore the highest-priority

branch next, it gets pushed onto the stack last. The stack is

now [...10, 9]. The next node to be popped will be 9.

After the algorithm finishes adding every node to

oculus_visit_sequence, the algorithm will decide the

final path for collecting every Elemental Oculus.
oculus_visit_sequence will be [0, 2, 5, 7, …],

final_path will be initialized by [0], and total_cost

will be 0.0. Next, starting from node 0, the algorithm will

decide to visit a node by directly walking or using the Teleport

Waypoint. The nearest Teleport Waypoints from node 2 are 27

with a distance of 301.04, while direct walking costs 294.2.

The algorithm will choose to walk to node 2 directly since it

costs less than teleporting. final_path will be [0, 2] and

final_cost will be 294.2. Next, from node 2 to node 5,

there is Teleport Waypoint 29, which is the nearest Teleport

Waypoint from node 5 and costs 82.93. The distance between

node 2 and node 5 is 191.2, which means the algorithm will

choose to do teleportation to 29, and then walk to node 5 since

teleport_cost < walk_cost. The final_path now is

[0, 2, 29, 5]. This will continue until every node is visited, or

until we are successfully collecting all Elemental Oculus.

After running the code, we will get this output, giving us

the efficient path for collecting all the Elemental Oculus.

--- Phase 1: Determining Optimal Oculus Sequence via Teleport-Aware DFS

Optimal Visit Sequence Found: [0, 2, 5, 7, 9, 8, 18, 19, 20, 13, 14,
15, 16, 21, 22, 25, 26, 6, 1, 10, 11, 17, 12, 4, 3, 23, 24]

--- Phase 2: Building Final Path with Teleport-or-Walk Decisions ---
--- Traversal Complete ---
Start at Node 0.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Travel from 0 -> 2. Method: Walk (Cost: 294.2)
Travel from 2 -> 5. Method: Teleport to TW 29 (Cost: 191.1)
Travel from 5 -> 7. Method: Walk (Cost: 82.9)
Travel from 7 -> 9. Method: Walk (Cost: 80.7)
Travel from 9 -> 8. Method: Teleport to TW 29 (Cost: 84.9)
Travel from 8 -> 18. Method: Teleport to TW 31 (Cost: 83.6)
Travel from 18 -> 19. Method: Teleport to TW 32 (Cost: 34.0)
Travel from 19 -> 20. Method: Walk (Cost: 59.4)
Travel from 20 -> 13. Method: Teleport to TW 31 (Cost: 117.9)
Travel from 13 -> 14. Method: Walk (Cost: 48.7)
Travel from 14 -> 15. Method: Walk (Cost: 132.7)
Travel from 15 -> 16. Method: Walk (Cost: 203.1)
Travel from 16 -> 21. Method: Teleport to TW 35 (Cost: 116.4)
Travel from 21 -> 22. Method: Teleport to TW 35 (Cost: 84.9)
Travel from 22 -> 25. Method: Teleport to TW 35 (Cost: 105.0)
Travel from 25 -> 26. Method: Walk (Cost: 94.9)
Travel from 26 -> 6. Method: Teleport to TW 29 (Cost: 52.8)
Travel from 6 -> 1. Method: Teleport to TW 29 (Cost: 227.8)
Travel from 1 -> 10. Method: Teleport to TW 33 (Cost: 107.3)
Travel from 10 -> 11. Method: Teleport to TW 33 (Cost: 48.0)
Travel from 11 -> 17. Method: Teleport to TW 34 (Cost: 100.6)
Travel from 17 -> 12. Method: Walk (Cost: 171.1)
Travel from 12 -> 4. Method: Walk (Cost: 130.2)
Travel from 4 -> 3. Method: Walk (Cost: 23.3)
Travel from 3 -> 23. Method: Teleport to TW 34 (Cost: 237.5)
Travel from 23 -> 24. Method: Walk (Cost: 72.9)

--- Final Path (including Teleport Waypoints) ---
0 -> 2 -> TW-29 -> 5 -> 7 -> 9 -> TW-29 -> 8 -> TW-31 -> 18 -> TW-32 ->
19 -> 20 -> TW-31 -> 13 -> 14 -> 15 -> 16 -> TW-35 -> 21 -> TW-35 -> 22
-> TW-35 -> 25 -> 26 -> TW-29 -> 6 -> TW-29 -> 1 -> TW-33 -> 10 -> TW-
33 -> 11 -> TW-34 -> 17 -> 12 -> 4 -> 3 -> TW-34 -> 23 -> 24

Total Estimated Cost: 2985.95

Fig. 16: Final path for collecting Elemental Oculus.

After running the code, we can get the approximated

efficient path, including which Teleport Waypoint we should

use and the final cost for collecting the Elemental Oculus,

which is 2895.95. Combining all the steps needed to reach this

solution, this algorithm takes O(N*N + N*M) time

complexity, where N is the Elemental Oculus and M is the

Teleport Waypoints.

VI. CONCLUSION

The challenges of collecting Elemental Oculus present a

fascinating variant of the Traveling Salesman Problem. Given

that exact solutions for the TSP are computationally

intractable for non-trivial instances (NP-Hard), this paper

introduces HUTAO-TSP (Hamiltonian Undirected

Teleportation Aware Open TSP), a novel heuristic framework

designed to approximate a highly efficient collection route in

polynomial time.

As a heuristic model, HUTAO-TSP does not guarantee a

mathematically optimal path. The primary limitations of the

current model stem from its simplification of the game world

into a 2D Euclidean space, while some in-game world has

various terrains. But it successfully approximates the efficient

path for collecting Elemental Oculus. Further research could

extend this work in several promising directions, such as

terrain and obstacle integration, three-dimensional

pathfinding, dynamic heuristic, and generalization to other

domains.

APPENDIX

The full source code for this paper can be found in this GitHub
repository:

https://github.com/YavieAzka/hutao-tsp

ACKNOWLEDGMENT (Heading 5)

The author wishes to express gratitude to God Almighty for
His blessings and grace, which made the completion of this
paper possible.

The author extends his deepest appreciation to Dr. Ir.
Rinaldi Munir, M.T, as the lecturer for the IF1220 Discrete
Mathematics, for the invaluable guidance, constructive
feedback, and profound knowledge shared throughout the
semester and during the development of this work.

REFERENCES

[1] Genshin Impact Wiki, “Genshin Impact Wiki,” Fandom. [Online].
Available: https://genshin-
impact.fandom.com/wiki/Genshin_Impact_Wiki. [Accessed: Jun. 10,
2025].

[2] R. Munir, “IF2120 Matematika Diskrit – Semester II Tahun 2024/2025,”
Institut Teknologi Bandung, [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025-
2/matdis24-25-2.htm#SlideKuliah. [Accessed: Jun. 11, 2025].

[3] “Depth First Search or DFS for a Graph,” *GeeksforGeeks*, Last
Updated: 29 Mar. 2025. [Online]. Available:
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/.
[Accessed: Jun. 19, 2025].

[4] “Oculus,” *Genshin Impact Wiki*, Fandom. [Online]. Available:
https://genshin-impact.fandom.com/wiki/Oculus. [Accessed: Jun. 19,
2025].

[5] “Teleport Waypoint,” *Genshin Impact Wiki*, Fandom. [Online].
Available: https://genshin-impact.fandom.com/wiki/Teleport_Waypoint.
[Accessed: Jun. 11, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Ttd

Yavie Azka Putra Yavie Azka Putra Araly

13524077

https://github.com/YavieAzka/hutao-tsp

